A Mordell inequality for lattices over maximal orders

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mordell Inequality for Lattices over Maximal Orders

In this paper we prove an analogue of Mordell’s inequality for lattices in finite-dimensional complex or quaternionic Hermitian space that are modules over a maximal order in an imaginary quadratic number field or a totally definite rational quaternion algebra. This inequality implies that 16dimensional Barnes-Wall lattice has optimal density among all 16-dimensional lattices with Hurwitz struc...

متن کامل

Testing isomorphism of lattices over CM-orders

A CM-order is a reduced order equipped with an involution that mimics complex conjugation. The Witt-Picard group of such an order is a certain group of ideal classes that is closely related to the “minus part” of the class group. We present a deterministic polynomial-time algorithm for the following problem, which may be viewed as a special case of the principal ideal testing problem: given a C...

متن کامل

Rigid Lattices Are Mordell-weil

We say a lattice Λ is rigid if it its isometry group acts irreducibly on its ambient Euclidean space. We say Λ is Mordell-Weil if there exists an abelian variety A over a number field K such that A(K)/A(K)tor, regarded as a lattice by means of its height pairing, contains at least one copy of Λ. We prove that every rigid lattice is Mordell-Weil. In particular, we show that the Leech lattice can...

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

The Construction of Maximal Orders Over a Dedekind Domain

Suppose R is a complete local Dedekind domain with quotient field F, and let f(x) be a monic polynomial in R[x] having non-zero discriminant. We present here a new algorithm to construct the maximal order of the algebra Af = F[x]/f(x)F[x]. The new algorithm incorporates ideas of Zassenhaus (1975, 1980) concerning P-adic stability and the algebraic decomposition of A s . We show that it is alway...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2010

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-10-04989-5